Workshop on partonic transverse momentum distributions

Alessandro Bacchetta (U. Pavia) Gunar Schnell (DESY)

THETALKS

THETALKS

- 17 talks

THE TALKS

- 17 talks
- Experiment: BELLE, COMPASS, HERMES, H1, JLAB

THETALKS

- 17 talks
- Experiment: BELLE, COMPASS, HERMES, H1, JLAB
- Theory: factorization, evolution, lattice QCD

THETALKS

- 17 talks
- Experiment: BELLE, COMPASS, HERMES, H1, JLAB
- Theory: factorization, evolution, lattice QCD
- Phenomenology: fits, models

THETMDs

$$
x f_{1}^{u}(x)
$$

THETMDs

$$
x f_{1}^{u}(x)
$$

$$
x f_{1}^{u}\left(x, p_{T}^{2}\right)
$$

THETMDs

$$
x f_{1}^{u}(x)
$$

$$
x f_{1}^{u}\left(x, p_{T}^{2}\right)
$$

Why?

Exploring new dimensions, 3D momentum structure, tomography in momentum space, impact on high energy physics...

THETMDs

talk by E. Boglione

THETMDS

talk by E. Boglione

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

THETMDS

talk by E. Boglione
helicity quark pol.

Sivers Twist-2 TMDs transversity

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

THETMDS

talk by E. Boglione

helicity quark pol.

Boer-Mulders

Sivers Twist-2 TMDs
pretzelosity transversity

worm-gear

TMDs in black survive transverse-momentum integration TMDs in red are T-odd

PROBABILISTIC INTERPRETATION

Proton goes out of the screen/ photon goes into the screen
parton transverse momentum
$f_{1}=\bigcirc$

$$
\begin{aligned}
& h_{1}^{\perp}=\oplus-\infty \\
& g_{1 T}=-\odot \rightarrow-\infty
\end{aligned}
$$

$g_{1}=\varnothing$ ® \otimes

$$
h \frac{1}{1 L}=\quad \rightarrow \quad \rightarrow \quad \rightarrow
$$

MODELS

talk by S. Boffi

Light-cone quark model

SIVERS FUNCTION IN MODELS

SIVERS FUNCTION IN MODELS

A. Courtoy's talk

MIT bag

SIVERS FUNCTION IN MODELS

A. Courtoy's talk

MIT bag

Constituent quark

SIVERS FUNCTION IN MODELS

M. Radici's talk

A. Courtoy's talk

MIT bag

Constituent quark

Diquark spectator

A. Courtoy's talk

"Do not quench your inspiration and imagination; do not become the slave of your model'

Vincent Van Gogh

EXPLORATORY LATTICE CALCULATIONS

P. Hägler's talk

EXPLORATORY LATTICE CALCULATIONS

P. Hägler's talk

A worm gear

EXPLORATORY LATTICE CALCULATIONS

P. Hägler's talk

A worm gear

Caveat: gauge link!

EXPLORATORY LATTICE CALCULATIONS

P. Hägler's talk

A worm gear

Caveat: gauge link!

Isolating TMD contribution

Parton distribution (i.e. Sivers effect):

Drell-Yan:

Jet (integrated) physics:
Prompt gamma:

Multidimensional analyses:
Fragmentation (i.e. Collins effect):

$$
\text { Electron-positron reaction: } \quad e^{+} e^{-} \rightarrow h h X
$$

Hadron production with different spin and mass

Measurement that depend on the azimuth about the trust axis

$$
p^{\dagger} p \rightarrow e^{+} e^{-} X
$$

$$
e p^{\uparrow} \rightarrow e^{\prime} h X
$$

$$
p^{\uparrow} p \rightarrow \text { jet } X, \quad p^{\uparrow} p \rightarrow \text { jet jet } X,
$$

$$
p^{\uparrow} p \rightarrow \gamma X, p^{\uparrow} p \rightarrow \gamma \text { jet } X
$$

$$
p^{\uparrow} p, e p^{\uparrow} \rightarrow \pi X, \omega X, K^{*} X
$$

TMD palette

Hadron probe

pp reactions: PDFs (x FFs)

Strong SSA at large X_{F}

ISI x FSI

SIDIS: PDFs x FFs
Non-zero Sivers
Non-zero h_{1}, Collins \& IFF Non-zero Boer-Mulders

Drell-Yan: PDFs
Non-zero Boer-Mulders

e+e- annihilation: FFs

Non-zero Collins \& IFF

TMD palette

Hadron probe

pp reactions: PDFs (x FFs)

Strong SSA at large X_{F}

Drell-Yan: PDFs

Non-zero Boer-Mulders

SIDIS: PDFs xFFs
Non-zero Sivers Non-zero h_{1}, Collins \& IFF Non-zero Boer-Mulders

ISI \times FSI ISI
RICH

TMD palette

Hadron probe

pp reactions: PDFs (x FFs)

Strong SSA at large X_{F}

Drell-Yan: PDFs

Non-zero Boer-Mulders

SIDIS: PDFs xFFs

Non-zero Sivers
Non-zero h_{1}, Collins \& IFF Non-zero Boer-Mulders
e+e- annihilation: FFs
Non-zero Collins \& IFF

MISSION I:TRANSVERSITY

THE COLLINEAR APPROACH

talk by
R. Joosten

$$
\mathcal{P}_{\Lambda}(x, y, z)=\mathcal{P}_{T} D_{N N}(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{q \rightarrow \Lambda}(z)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q \rightarrow \Lambda}(z)}
$$

THE COLLINEAR APPROACH

talk by
R. Joosten

THE COLLINEAR APPROACH

talk by
R. Joosten

$$
\mathcal{P}_{\Lambda}(x, y, z)=\mathcal{P}_{T} D_{N N}(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x) H_{1}^{q \rightarrow \Lambda}(z)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q \rightarrow \Lambda}(z)}
$$

THE COLLINEAR APPROACH II

spin-dependent 2-hadron production:
(Unpolarized beam, Transversely pol. target)

$$
\sigma_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sum e_{q}^{2} h_{1}^{q} H_{1}^{\varangle}
$$

$$
\begin{gathered}
H_{1}^{\varangle}=H_{1}^{\varangle}\left(z, \zeta, M_{\pi \pi}^{2}\right) \\
\quad\left(\zeta \sim z_{1} /\left(z_{1}+z_{2}\right)\right)
\end{gathered}
$$

THE COLLINEAR APPROACH II

spin-dependent 2-hadron production:
(Unpolarized beam, Transversely pol. target)

$$
\sigma_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sum e_{q}^{2} h_{1}^{q} H_{1}^{\varangle}
$$

$$
\begin{gathered}
H_{1}^{\varangle}=H_{1}^{\varangle}\left(z, \zeta, M_{\pi \pi}^{2}\right) \\
\left(\zeta \sim z_{1} /\left(z_{1}+z_{2}\right)\right)
\end{gathered}
$$

THE COLLINEAR APPROACH II

spin-dependent 2-hadron production:
(Unpolarized beam, Transversely pol. target)

$$
\begin{gathered}
\sigma_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sum e_{q}^{2} \\
H_{1}^{\varangle}=H_{1}^{\varangle}\left(z, \zeta, M_{\pi \pi}^{2}\right) \\
\left(\zeta \sim z_{1} /\left(z_{1}+z_{2}\right)\right)
\end{gathered}
$$

(1) only relative momentum of hadron pair relevant
\Rightarrow integration over transverse momentum of hadron pair simplifies factorization and Q^{2} evolution

THE COLLINEAR APPROACH II

 spin-dependent 2-hadron production:(Unpolarized beam, Transversely pol. target)

$$
\begin{gathered}
\sigma_{U T} \sim \sin \left(\phi_{R \perp}+\phi_{S}\right) \sum e_{q}^{2} \\
H_{1}^{\varangle}=H_{1}^{\varangle}\left(z, \zeta, M_{\pi \pi}^{2}\right) \\
\left(\zeta \sim z_{1} /\left(z_{1}+z_{2}\right)\right)
\end{gathered}
$$

(1) only relative momentum of hadron pair relevant
\Rightarrow integration over transverse momentum of hadron pair simplifies factorization and Q^{2} evolution
11) however, cross section becomes quite complex (differential in 9 variables)

IFF IN SEMI-INCLUSIVE DIS

A. Airapetian et al., JHEP 0806:017,2008

区 first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS!
\square invariant-mass dependence rules out Jaffe model

IFF IN SEMI-INCLUSIVE DIS

IFF IN E+E-AT BELLE

talk by M. Grosse-Perdekamp

THE TMD APPROACH

THE TMD APPROACH

(1) Collins function provides a correlation between spin of quark and transverse momentum of hadron produced

THE TMD APPROACH

1) Collins function provides a correlation between spin of quark and transverse momentum of hadron produced
(1). requires TMD formalism - factorization, universality and evolution more complex

COLLINS EFFECT IN E+E-

talk by M. Grosse-Perdekamp

COLLINS EFFECT IN E+E-

talk by M. Grosse-Perdekamp

should depend linearly on $\sin ^{2} \theta /\left(1+\cos ^{2} \theta\right)$

FACTORIATION

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right] \\
& =H\left(Q^{2}, \mu^{2}, \zeta, \zeta_{h}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& \quad x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
\end{aligned}
$$

FACTORIZATION

$$
\begin{aligned}
& F_{U U, T}\left(x, z, P_{h \perp}^{2}, Q^{2}\right)=\mathcal{C}^{\prime}\left[f_{1} D_{1}\right] \\
& =H\left(Q^{2}, \mu^{2}, \zeta, \zeta_{h}\right) \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} d^{2} \boldsymbol{l}_{T} \delta^{(2)}\left(\boldsymbol{p}_{T}-\boldsymbol{k}_{T}+\boldsymbol{l}_{T}-\boldsymbol{P}_{h \perp} / z\right) \\
& x \sum_{a} e_{a}^{2} f_{1}^{a}\left(x, p_{T}^{2}, \mu^{2}, \zeta\right) D_{1}^{a}\left(z, k_{T}^{2}, \mu^{2}, \zeta_{h}\right) U\left(l_{T}^{2}, \mu^{2}, \zeta \zeta_{h}\right)
\end{aligned}
$$

Hard part
TMD PDF

x EVOLUTION OF MOMENTS

talk by J. Qiu

x EVOLUTION OF MOMENTS

talk by J. Qiu

$$
\frac{\partial f_{1}^{\mathrm{NS}}\left(x, \mu^{2}\right)}{\partial \ln \mu^{2}}=\left.\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{1}^{\mathrm{NS}}\left(\xi, \mu^{2}\right) P_{q q}(z)\right|_{z=x / \xi}
$$

x EVOLUTION OF MOMENTS

$$
\frac{\partial f_{1}^{\mathrm{NS}}\left(x, \mu^{2}\right)}{\partial \ln \mu^{2}}=\left.\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{1}^{\mathrm{NS}}\left(\xi, \mu^{2}\right) P_{q q}(z)\right|_{z=x / \xi}
$$

talk by J. Qiu

$$
T_{F}(x, x) \equiv \int d^{2} p_{T} p_{T}^{2} f_{1 T}^{\perp}\left(x, p_{T}^{2}\right)
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{T}_{q, F}\left(x, x, \mu_{F}\right)}{\partial \ln \mu_{F}^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left\{P_{q q}(z) \mathcal{T}_{q, F}\left(\xi, \xi, \mu_{F}\right)\right. \\
&+\frac{C_{A}}{2}\left[\frac{1+z^{2}}{1-z}\left[\mathcal{T}_{q, F}\left(\xi, x, \mu_{F}\right)-\mathcal{T}_{q, F}\left(\xi, \xi, \mu_{F}\right)\right]+z \mathcal{T}_{q, F}\left(\xi, x, \mu_{F}\right)\right] \\
&\left.+\frac{C_{A}}{2}\left[\mathcal{T}_{\Delta q, F}\left(x, \xi, \mu_{F}\right)\right]\right\}
\end{aligned}
$$

EVOLUTION OF MOMENTS

$$
\frac{\partial f_{1}^{\mathrm{NS}}\left(x, \mu^{2}\right)}{\partial \ln \mu^{2}}=\left.\frac{\alpha_{s}\left(\mu^{2}\right)}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi} f_{1}^{\mathrm{NS}}\left(\xi, \mu^{2}\right) P_{q q}(z)\right|_{z=x / \xi}
$$

$$
T_{F}(x, x) \equiv \int d^{2} p_{T} p_{T}^{2} f_{1 T}^{\perp}\left(x, p_{T}^{2}\right)
$$

$$
\begin{aligned}
& \frac{\partial \mathcal{T}_{q, F}\left(x, x, \mu_{F}\right)}{\partial \ln \mu_{F}^{2}}=\frac{\alpha_{s}}{2 \pi} \int_{x}^{1} \frac{d \xi}{\xi}\left\{P_{q q}(z) \mathcal{T}_{q, F}\left(\xi, \xi, \mu_{F}\right)\right. \\
&+\frac{C_{A}}{2}\left[\frac{1+z^{2}}{1-z}\left[\mathcal{T}_{q, F}\left(\xi, x, \mu_{F}\right)-\mathcal{T}_{q, F}\left(\xi, \xi, \mu_{F}\right)\right]+z \mathcal{T}_{q, F}\left(\xi, x, \mu_{F}\right)\right] \\
&\left.+\frac{C_{A}}{2}\left[\mathcal{T}_{\Delta q, F}\left(x, \xi, \mu_{F}\right)\right]\right\}
\end{aligned}
$$

GAUGE LINKS

talk by I. Cherednikov

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

GAUGE LINKS

talk by I. Cherednikov

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

GAUGE LINKS

talk by I. Cherednikov

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

PT integration

GAUGE LINKS

talk by I. Cherednikov

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

PT integration

GAUGE LINKS

talk by I. Cherednikov

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

PT integration

$$
f_{1}^{q}\left(x, p_{T}^{2}, \zeta\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]}^{\zeta} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

GAUGE LINKS

talk by I. Cherednikov

$$
f_{1}^{q}\left(x, p_{T}^{2}\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

PT integration

PT integration

$$
f_{1}^{q}\left(x, p_{T}^{2}, \zeta\right)=\left.\int \frac{d \xi^{-} d^{2} \xi_{T}}{16 \pi^{3}} e^{i p \cdot \xi}\langle P| \bar{\psi}^{q}(0) U_{[0, \xi]}^{\zeta} \gamma^{+} \psi^{q}(\xi)|P\rangle\right|_{\xi^{+}=0}
$$

FIT OF COLLINS EFFECT

[left] HERMES data [Diefenthaler et al. 2007]
(hydrogen target)
talk by U. D'Alesio

(deuteron target)
[right] COMPASS data [Alekseev et al. 2008].

TRANSVERSITY

[1] Soffer et al. PRD 65 (02)
[2] Korotkov et al. EPJC 18 (01)
[3] Schweitzer et al., PRD 64 (01)
[4] Wakamatsu, PLB 509 (01)
[5] Pasquini et al., PRD 72 (05)
[6] Bacchetta, Conti, Radici, PRD 78 (08)
[7] Anselmino et al., PRD 75 (07)
[8] Anselmino et al., arXiv:0807.0173

MISSION 2:T-ODD FUNCTIONS

BOER-MULDERS EFFECT IN

 DRELL-YAN
talk by J.C. Peng

- Lam-Tung relation: $1-\lambda=2 \nu$
- insensitive to QCD corrections
- clear sign for Boer-Mulders effect ($\sim \nu$)
- violated in pion-induced Drell-Yan

sIGNS OF BOER-MULDERS

talk by J.C. Peng

sIGNS OF BOER-MULDERS

valence $B M$ fctn

SIGNS OF BOER-MULDERS

valence $B M$ fctn

SIGNS OF BOER-MULDERS

valence $B M$ fctn

similar BM fctn for up and down quarks?

SIGNS OF BOER-MULDERS

talk by J.C. Peng

$$
\begin{aligned}
& \text { SIVERS EFFECT IN SIDIS } \\
& 2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\mathrm{UT}}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)}
\end{aligned}
$$

$$
\simeq-\frac{f_{1 \mathrm{~T}}^{\perp, u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, K_{T}^{2}\right)}{f_{1}^{u}(x) D_{1}^{u \rightarrow \pi^{+}}(z)}
$$

M. Diefenthaler

$$
\begin{aligned}
& \text { SIVERS EFFECT IN SIDIS } \\
& 2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{\text {UT }}=-\frac{\sum_{q} e_{q}^{2} f_{1 \mathrm{~T}}^{\perp, q}\left(x, p_{T}^{2}\right) \otimes D_{1}^{q}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)}
\end{aligned}
$$

π^{+}dominated by u-quark scattering:

$$
\simeq-\frac{f_{1 \mathrm{~T}}^{\perp, u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, K_{T}^{2}\right)}{f_{1}^{u}(x) D_{1}^{u \rightarrow \pi^{+}}(z)}
$$

~u-quark Sivers DF < 0

$$
\begin{aligned}
& \text { SIVERS EFFECT IN SIDIS } \\
& 2\left\langle\sin \left(\phi-\phi_{S}\right)\right\rangle_{U T}=-\frac{\sum_{q} e_{q}^{2} f_{1,+, q}\left(x, p_{p}^{2}\right) \otimes D_{1}^{q}\left(z, K_{T}^{2}\right)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x) D_{1}^{q}(z)}
\end{aligned}
$$

π^{+}dominated by u-quark scattering:
$\simeq-\frac{f_{1 \mathrm{~T}}^{\perp, u}\left(x, p_{T}^{2}\right) \otimes D_{1}^{u \rightarrow \pi^{+}}\left(z, K_{T}^{2}\right)}{f_{1}^{u}(x) D_{1}^{u \rightarrow \pi^{+}}(z)}$
~u-quark Sivers DF < 0

- d-quark Sivers DF > 0 (cancelation for π^{-})

THE "SIVERS RIDDLE"

THE "SIVERS RIDDLE"

THE "SIVERS RIDDLE"

talk by R. Joosten

THE "SIVERS RIDDLE"

FIT OFTHE SIVERS EFFECT

Fit of HERMES data [Diefenthaler et al. 2006,
Pappalardo et al. 2008]
talk by U. D'Alesio

and COMPASS data [Martin et al. 2006] (deuteron target)

SSA IN PP COLLISIONS

ANL
$\sqrt{ } \mathrm{S}=4.9 \mathrm{GeV}$

BNL
$\sqrt{ }=6.6 \mathrm{GeV}$

FNAL
$\sqrt{ } \mathrm{s}=19.4 \mathrm{GeV}$

RHIC
$\sqrt{ } \mathrm{s}=62.4 \mathrm{GeV}$

talk by C. Aidala

SSAs observed at RHIC: 200 and 62.4 GeV

Note different scales

K- asymmetries underpredicted

BRAHMS

Note different scales

K- asymmetries underpredicted

BRAHMS

Large antiproton asymmetry?? Unfortunately no 62.4 GeV measurement

OTHER MISSIONS...

GLUONTMD AT H1

$x f^{g}\left(x, k_{T}^{2}, Q_{0}\right)=N x^{-B}(1-x)^{C}(1-D x) \exp \left(\frac{\left(k_{t}-\mu\right)^{2}}{\sigma^{2}}\right)$

Minimum
$N=0.487+/-0.007$
$B=0.097+/-0.003$
$D=-5.10+/-0.35$
Chi2/ndf $=2.8$
Note: dijet data seem to require a large shift

- for example, $h_{1 T}^{\perp}>0$ implies nucleon prolate when quark transversity parallel nucleon spin
- and more oblate when quark transversity anti-parallel nucleon spin
- and for some spin configurations may even resemble a pretzel ... (G.A. Miller, 2003)

PRETZELOSITY AT 毛embs

The $\left\langle\sin \left(3 \phi-\phi_{S}\right)\right\rangle_{\cup \perp}$ Fourier component:

suppressed w.r.t.
Collins and Sivers amplitudes

The $\left\langle\sin \left(3 \phi-\phi_{S}\right)\right\rangle_{\cup \perp}$ Fourier component:

suppressed w.r.t.
$O^{\text {Collins and Sivers amplitudes }}$

PRESENT AND FUTURE

PRESENT AND FUTURE

A 10 years party

We opened a window to a new world....

Jump in and see you at the beach....

